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Abstract—Modern systems on a chip (SoCs) utilize heterogeneous
architectures where multiple IP cores have concurrent access to on-chip
shared resources. In security-critical applications, IP cores have different
privilege levels for accessing shared resources, which must be regulated
by an access control system. AKER is a design and verification framework
for SoC access control. AKER builds upon the Access Control Wrapper
(ACW) – a high performance and easy-to-integrate hardware module
that dynamically manages access to shared resources. To build an SoC
access control system, AKER distributes the ACWs throughout the SoC,
wrapping controller IP cores, and configuring the ACWs to perform local
access control. To ensure the access control system is functioning correctly
and securely, AKER provides a property-driven security verification using
MITRE common weakness enumerations. AKER verifies the SoC access
control at the IP level to ensure the absence of bugs in the functionalities
of the ACW module, at the firmware level to confirm the secure operation
of the ACW when integrated with a hardware root-of-trust (HRoT), and
at the system level to evaluate security threats due to the interactions
among shared resources. The performance, resource usage, and security
of access control systems implemented through AKER is experimentally
evaluated on a Xilinx UltraScale+ programmable SoC, it is integrated
with the OpenTitan hardware root-of-trust, and it is used to design an
access control system for the OpenPULP multicore architecture.

I. INTRODUCTION

Modern System on a Chip (SoC) have heterogeneous architec-
tures comprised of microprocessors, hardware accelerators, on-chip
memory hierarchies, and I/O. They utilize complex on-chip com-
munication networks where the processors and accelerators transfer
information between themselves and other shared resources, often
with tight constraints on throughput, latency, and resource usage [1],
[2].

In security-critical applications, on-chip resources have different
levels of trustworthiness and criticality that are often dynamic in
nature. Examples include: 1) a shared memory may be (temporally)
isolated from an untrusted IP core, 2) certain resources are only
accessible during debug mode, and 3) only the hardware root of trust
can access security critical control and status registers.

In order to operate in a safe and secure manner, SoCs use an access
control system that enforces an access control policy. The access
control policy defines the ability of the SoC controllers to access the
different peripherals. The access control policy changes over the SoC
life-cycle – design, manufacturing, testing, passing through several
OEMs, and on to the final user. Access control policies are dynamic,
e.g., policies differ when in boot mode, secure operating modes, reset,
and normal operating scenarios. Thus, SoC access control policies
require an efficient and flexible access control system.

The access control system plays a critical role for ensuring safe
and secure operation. Thus, an access control system must undergo
a rigorous verification process. Verification includes functional cor-
rectness. Additionally, and equally as important, it must undergo a
security verification process that addresses potential security weak-
nesses and vulnerabilities. An exploit in the access control system
endangers the confidentiality, integrity, and availability of the SoC.

Unfortunately, it is challenging to correctly implement SoC access
control systems. The MITRE common weakness enumeration (CWE)

database reports a substantial and growing number of hardware weak-
nesses [3]. Our security verification process identified 30 of these
CWEs related to access control systems (see Section III). Access
control flaws are extremely dangerous as they provide the opportunity
for low-level system access. Furthermore, they are challenging to
patch. At best they require a firmware rewrite; at worst, they require
disabling features or re-manufacturing the chip.

This work proposes AKER – a framework for the development
of safe and secure on-chip access control systems targeting the
requirements of modern safety- and security-critical applications.
These requirements include:

Security Verification: AKER provides a property-driven security
verification procedure [4] to ensure that the SoC access control
policy is devoid of any CWEs. This provides high assurance on the
secure operation of AKER-based access control systems. The security
verification is done at three levels: the IP level, the firmware level,
and the system level. AKER can be easily extended to handle next-
generation SoCs and address different CWEs.

Interoperability: AKER is AXI-compliant and fully transparent to
controllers and interconnect. No knowledge or modifications on the
internals of the controllers, peripherals, and interconnect are required
to integrate an AKER access control system.

Immediate Filtering of Illegal Requests: AKER filters transactions
at the source, before entering the interconnect – no illegal transactions
are allowed to enter the network. This avoids any identification
issues and prevents system-level interference generated by illegal
transactions (e.g., DoS attacks, see Section IV-A).

Secure Configuration: AKER access control systems easily inte-
grate with a Hardware Root of Trust (HRoT) for runtime monitoring
and management of the controllers. Section III-C describes the
integration and verification of the OpenTitan [5] HRoT with AKER.

Flexibility: AKER-based access control systems allows static or
dynamic configuration of the access control policy by the HRoT. This
provides the required flexibility to cope with the complex life-cycle
of modern SoCs.

Diagnostic Information: AKER access control systems log diagnos-
tic information regarding illegal attempts. This provides flexibility to
the HRoT on how to perform modules readmission.

Efficient Performance and Resource Usage: AKER access control
systems incur only 1 clock cycle delay per AXI transaction indepen-
dent on the number considered memory regions (see Section IV-A).
This corresponds to an impact of < 1% in the tested scenarios. The
resource usage of an AKER-based access control system is minimal
and is configurable to be tailored to the SoC and use case.

Open-Source: The design and the security properties developed
within AKER are openly released. This allows further verification and
provides a solid base for design and security verification extension,
facilitating broader use. Our repo contains all of the designs, security
properties, and security property templates proposed in AKER [6].

Ease of Integration: AKER access control systems are experimen-
tally validated via their integration into SoCs implemented on a FPGA
SoC architecture and on the OpenPULP [7].



II. SOC ACCESS CONTROL

An SoC architecture consists of a set of controller devices access-
ing a set of peripherals devices.1 Different processors, accelerators,
and other IP cores can be assigned as a controller. This allows them to
autonomously and concurrently communicate with shared peripheral
resources available on the SoC, e.g., a DRAM memory controller, on-
chip memories, ROM, IP core control and status registers (CSRs),
and GPIOs. On-chip data transfers use a communication protocols
like the AMBA AXI [8] or TileLink [9], which employ a flexible,
asymmetric, synchronous interface targeting high performance and
low latency communications. A key aspect of any SoC access control
system is arbitrating accesses to on-chip resources. High-speed on-
chip communications protocols use memory mapped addressing to
allow controllers to specify the resources they wish to access. An
access control policy specifies whether a data request is allowable at
that given time. It is important that the access control system exactly
implements the access control policy while having a minimal impact
on performance and area.

A. SoC Interconnect Architectures

Figure 1 shows an SoC interconnect architecture with N controllers
C (C1, . . . , CN ) each with a manager (M) interface, L peripherals
P (P1, . . . , PL) with a subordinate (S) interface, and an interconnect
IAXI connecting them. We adopt AMBA AXI standard due to its
widespread usage. Our techniques are applicable to other on-chip
communication protocols with minimal modifications. AXI defines an
asymmetric communication interface comprised of five independent
channels: address read (AR), address write (AW), data read (R), data
write (W), and write response (B). IAXI arbitrates the access of C
modules to the shared P modules.

Fig. 1: An SoC on-chip interconnect architecture composed of N con-
troller modules (C) connected to L peripheral modules (P ).

A controller Ci can initiate a transaction to a shared peripheral Pj

issuing an address request through its AXI M interface. The address
requests is routed to the peripheral Pj by the AXI interconnect. Pj

is accessible by Ci through a unique set of contiguous addresses,
also called peripheral address region. Pj serves the received requests
providing the required data (read request) or accepting the write data
and replying with a write response (write request).

B. Threat Model

The threat model consists of one or more controllers that are
malicious or misprogrammed and attempt to perform transactions
that violate the SoC access control policy. Security threats are related
to integrity (e.g., untrusted controller modifies a peripheral’s control
and status register), confidentiality (e.g., secret key leakage), and

1We adopt the terminology controller/peripheral to describe system-level
interactions between IP cores. We use M (manager) and S (subordinate) when
specifically referring to the AXI protocol.

availability (e.g., a denial-of-service attack). Many of the MITRE
hardware CWEs [3] relate to access control. We assume the attacker
has full knowledge of these types of weaknesses. Often, weaknesses
are not caught due to a superficial security verification of the access
control system. We articulate specific vulnerabilities that we consider
as formal properties as part of the AKER Security Verification process
(see Section III). These properties are then verified using a property-
driven hardware security methodology [4].

We assume that an access control policy specifies allowable trans-
actions between on-chip controller resources and shared peripheral
resources. The policy describes the allowable read and write requests
between resources using a set of address ranges. A range is a
contiguous address space encoded as the base address and the range
size. Additionally, we assume the functionalities of P , the routing
functionalities of IAXI, and the Trusted Entity functionalities are
trustworthy and implemented correctly.

C. On-chip Access Control Systems

This section discusses options for the implementing on-chip access
control system. The primary options include access control monitor-
ing in the interconnect, at the peripherals, in a centralized location,
or at the controller (AKER’s solution).

1) Access Control using AXI Interconnect: The access control pol-
icy is enforced within the crossbar interconnect by implementing only
the selected physical connections between controllers and peripherals
according to the privacy and integrity requirements [10]. The AXI
interconnect is statically configured only with physical connections
between a controller and peripheral that are allowed by the policy.

Limitations: Hard-coding the access control system does not allow
for dynamic updates to the access control policy. Therefore, this
approach is not a viable option for modern SoCs having complex
lifecycles. Moreover, the definition of the access control policy can be
limited to simplified and unrealistic scenarios for several applications
(see Section IV-A).

2) Access Control in Peripherals: Each peripheral P includes
additional logic that analyzes each request and decides whether to
serve it depending on the access control policy [11], [12]. This
methodology implicitly assumes that each request is somehow se-
curely marked with the information regarding the identity of the
issuing controller. Typically, access control policies enforced in
peripherals are configurable, providing some flexibility to handle
dynamic policies.

Limitations: The AXI standard does not define any information
about the source controller. A common workaround uses the AXI ID
signals for identification [13]. However, the AXI IDs are intended to
denote parallel execution of threads. An AXI controller is allowed
to issue address requests using multiple ID values. Thus, IDs are
not suitable for access control. Additionally, AXI does not address
the integrity of the ID(s), which allows ID manipulation during
request propagation and adds uncertainty about the provenance of
the request [8]. Another consideration is that any illegal requests
received by a peripheral must be terminated with an AXI-compliant
error to avoid network locks. This causes unwanted interference with
the execution of legal transactions (see Section IV-A). Such solutions
can also pose strong limitations in the definition of realistic access
control policies (see Section IV-A).

3) Centralized Policy Engine: Another option is a centralized
security policy engine [14], [15]. The central security policy engine
is responsible for authenticating any memory transaction.

Limitations: All decisions are made by the central security engine,
which requires communication between the wrapper and the security
engine on each transaction. This communication can impact the per-
formance of the system and create bottleneck at the central security
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engine. Thus, such solutions are not suitable for high-performance or
latency-critical systems.

III. AKER

AKER is a design and verification framework for developing SoC
access control systems, aimed at meeting the performance, security,
and flexibility requirements of modern safety- and security-critical
applications. AKER builds upon the Access Control Wrapper (ACW)
– a high-performance, programmable module that supervises the
behaviour of memory transactions from a controller. AKER includes
property-driven security verification [4] at the IP level, firmware level,
and system level. AKER uses CWEs to identify potential weaknesses,
develop property templates to aid in the property generation process,
and use information flow tracking hardware verification tools to
validate complex behaviors related to confidentiality and integrity
of the SoC access control system.

A. The Access Control Wrapper

The Access Control Wrapper (ACW) is a configurable access
control module designed to monitor an AXI-compliant controller.
The ACW exports an AXI M interface, an AXI-lite S configuration
interface, and an output interrupt line. An ACW can be used on any
SoC controller resource whose memory accesses require arbitration
for safety or security reasons; each untrusted controller Ci is wrapped
by an ACW module ACWi. Figure 2 provides an example of an
AKER-based access control system. The M interface of ACWi is
connected to the AXI interconnect (in place of the M interface of
Ci), while the S interface and the interrupt line are connected to a
Trusted Entity (TE) (i.e., a HRoT, see Section III-B).

Fig. 2: Extended AXI multi-controller, multi-peripheral architecture in-
corporating an AKER-based access control system. The Trusted Entity
TE manages the ACW modules. Only legal requests are transmitted to the
AXI interconnect, i.e., the peripherals receive only legal AXI transactions.

ACWi holds a local access control policy LACPi, configured and
maintained by TE. LACPi describes the address regions legally
accessible by Ci, defining nr regions for read operations and nw

regions for write operation. Each memory request issued by Ci

is checked against the configuration of LACPi; if the request is
fully contained in at least one of the LACPi’s address regions, the
request is considered legal by ACWi and allowed to propagate to
the AXI interconnect. nr and nw impact the resource consumption
of the ACW module – the ACW design allows to easily customize
such values according to the SoC requirements. To minimize the
latency, the address regions are checked in parallel. Thus, the latency
introduced by the ACW is constant and independent of nr and nw.

The ACWi has three operating modes:
1) Reset Mode: the initial state of ACWi. It is awaiting configura-

tion with a valid LACPi. Any request issued by Ci is blocked and
does not propagate to the interconnect. Once LACPi is configured,
ACWi moves to Supervising Mode.

2) Supervising Mode: the normal operating mode of the ACWi.
Each address request issued by Ci is compared against the stored
LACPi. Legal requests are propagated to the AXI interconnect;
illegal requests are denied and never reach the AXI interconnect.
An illegal request moves ACWi into Decouple Mode.

3) Decouple Mode: an illegal request has occurred. ACWi saves
diagnostic information about the illegal request into its internal
anomalies registers. ACWi raises an interrupt to notify the TE of
the illegal access attempt. Any further request from Ci is blocked
and the ACWi waits on the TE for readmission. Decoupling Ci

after an illegal attempt ensures that TE can take appropriate actions
on Ci before the safe readmission of the module in the system.

Readmission Policy: The TE can analyze the diagnostic infor-
mation internal to ACWi and perform recovery operations on Ci

before switching back to Supervising Mode and thereby readmitting
Ci to communicate to the SoC. Examples of recovery operations
are resetting, reconfiguring, or even reprogramming Ci. In the most
extreme scenario, if the TE decides that the illegal request is the
result of a permanent fault, it can keep the ACWi in Decouple Mode,
thus permanently disconnecting Ci from the system.

                                                                   

Fig. 3: ACWi architecture: Ci is the controller module using an AXI M
interface. Regs are the configuration registers holding LACPi. The AXI
S interface is connected to the HRoT.

Figure 3 shows a representation of the internals of the ACWi.
The following discusses how ACWi behaves on read and write
transactions. ACW is compatible with any AXI-compliant request.
When Ci issues a read request AR through its M interface, ACWi

has the following behaviors:
• Address Check: Check AR against LACPi by comparing the

address of AR against each of the allowable read regions.
• Legal Request: If AR is fully included in at least one of the

allowed read regions of LACPi, propagate AR to the AXI
interconnect.

• Illegal Request: If AR is not fully included in any of the read
regions described in LACPi, AR is not propagated to the AXI
interconnect. ACWi saves internally information regarding the
illegal request AR. ACWi sends an AXI-compliant error to Ci,
notifies TE, and switches into Decouple Mode.

• Outstanding Transactions: Any legal outstanding transaction
initiated before an illegal transaction is completed normally.

When Ci issues a write request AW , ACWi behaves in a similar
manner as a read request using AW instead of AR and comparing
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the address request with the write regions of LACPi, instead of the
read regions. Additionally, since AXI transactions cannot be aborted,
Ci expects to provide the write data after it issues the illegal request.
ACWi waits to sample all the data words corresponding to AW
provided by Ci, discards them, and replies Ci with an AXI-compliant
error.

B. IP-level Security Verification

Security verification is crucial in scenarios where the design
serves a security-critical role such as implementing an access control
system. AKER uses a six-step security verification process following
a property-driven hardware security methodology [4]. The security
verification process describes the threat model, identifies security
assets, articulates potential weaknesses, defines security requirements,
specifies security properties, and verifies the security properties.

To drive our discussion, we first consider the IP-level verification
of the ACW, which consists of three entities: a single controller
C, a single ACW which wraps C, and a single peripheral P .
We assume that the ACW’s local access control policy LACP
is statically configured in RTL. In later sections, we apply the
same verification process to implement different SoC access control
systems. Section III-C performs firmware-level security verification
adding a hardware root-of-trust to configure the ACW. Section III-D
describes system-level security verification that ensures that multiple
ACWs adhere to a global access control policy.

1) Create Threat Model: The first step in the security verification
process develops the threat model. It is crucial to articulate the
relevant security concerns. Hardware threats are vast and must be
assessed based upon the usage of the hardware under design. We
consider an integrity scenario where C is untrusted and the ACW
and P are trusted. Therefore, the threat model considers C’s ability
to communicate with P via the ACW in a manner which does
not adhere to the statically-configured LACP . Threats related to
confidentiality are similarly possible given that confidentiality is a
dual to integrity [16].

2) Identify Assets: The second step identifies the assets (i.e., de-
sign signals) that will be secured via the remainder of the verification
process. Each asset will eventually have at least one associated
security requirement/property that will be used to verify its security.

Given our design and threat model, the assets we identify are the
design signals that make up the five AXI channels which connect
the ACW to C and P , and the design signals that make up the
configuration and anomaly registers. In later sections, we will refer
to these assets as the M AXI group and config/control group,
respectively, due to the similarity in their security requirements.

3) Identify Potential Weaknesses: The third step determines po-
tential weaknesses, which are defined as any mechanism that could
introduce a security vulnerability relevant to the threat model and
identified assets. Identifying these weaknesses is often challenging
and time-consuming since it requires designers to understand the
design’s specification, the design’s implementation, the subtleties in
the correlation between these two, and which parts of the design are
most relevant to the threat model. In an effort to increase the chance
of identifying security critical weaknesses, we use the threat model
and design to find relevant CWEs from MITRE’s extensive database
following to the CWE-IFT methodology [17].

We identified 17 CWEs relevant to the IP-level verification that
are divided into two groups. The first group relates to M AXI and
includes the read and write access points available to C, i.e., the
five M AXI channels. The second group includes the configuration
registers which store the ACW’s LACP , the anomaly registers which
store illegal request metadata, and the control logic which checks the
legality of and samples or blocks C’s transactions.

Relevant CWEs: 1220, 1221, 1244, 1258, 1259, 1264, 1266,
1267, 1268, 1269, 1270, 1271, 1272, 1274, 1280, 1282, 1326

4) Define security requirements: The fourth step in the process
defines plain-language security requirements for the identified weak-
nesses. Once a mechanism is identified as a potential weakness,
designers can articulate a security requirement which addresses how
that mechanism could fail as determined from the relevant CWEs and
an analysis of the design.

For the M AXI group of weaknesses (i.e., the AXI channels)
identified in Step 2, we develop security requirements addressing the
existence and the content of information flows between C, the ACW,
and P . Since the ACW sits between C and P , there will always be
information flows between C and the ACW and the ACW and P .
However, the source of these flows dictates their allowable behaviors.
Information flows in which the source is C and the destination is P
(or vice versa) should only occur when the ACW is in Supervising
Mode and a legal transaction is issued. In all other instances, the only
information flows that should occur are those in which the source is
the ACW, the destination is either C or P , and the content of the
flow does not deviate from the default AXI values we have selected.

Requirement 1: C cannot receive/send data from/to P which
originates while the ACW is in reset mode.

For the config/control group of weaknesses identified in Step 2,
we develop security requirements involving the content of registers
and signals. Many of the listed CWEs (e.g., 1258, 1266, 1269, and
1271) [3] focus on the failure to properly initialize, set, and clear the
contents of security-critical registers/signals, especially on transitions
between system states/modes. Considering this, the config/control
group of requirements dictate what content is appropriate for reg-
isters/signals given the ACW’s current mode of operation.

Requirement 2: The configuration/anomaly registers are cleared
and set to their default values while the ACW is actively being
reset.

5) Specify Security Properties: The fifth step in the process speci-
fies a security property template for each of the security requirements.
In order to verify a security requirement, it must be manually con-
verted into a formally specified security property which uses explicit
values, design signals, and operators to form an evaluable expression.
Rather than specifying nearly identical security properties for each
design signal that should adhere to a given security requirement,
AKER provides a property generation framework which automatically
generates these specific properties given a single security property
template with placeholder signals and a list of target design signals.

For the security requirements relevant to the M AXI group (Re-
quirement 1), the security property templates we specify are primarily
information flow tracking IFT properties. IFT properties enable us
to tag information from a particular source signal and track it as it
flows through our system [18]. For example, the send aspect of the
security requirement from Requirement 1 is formalized below using
the following template which fails if any information originating from
C during active reset flows to P .

‘signal_from_C‘ //source
when (ARESETN == 0) //tagging condition
=/=> //no-flow operator

‘signal_to_P‘ //destination

Note that the property involves the no-flow operator (=/=>).
Hardware information flow properties are a type of hyperprop-
erty [19]. Hyperproperties require specialized verification tools [20].
IFT properties are more challenging to verify than trace properties.
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Trace properties are stated over a set of traces, and are commonly
used in functional verification. Hyperproperties are stated over sets
of traces and are useful for proving noninterference – a crucial aspect
of information flow analysis.

For the security requirements relevant to the config/control group
(Requirement 2), the security property templates are primarily trace
properties which specify what the value of a specific signal/register
should be under various conditions. For example, the security re-
quirement is formalized using the following template which fails if
the configuration/anomaly registers do not contain their default values
after being reset.

‘reg‘ == ‘dflt_val‘
unless
(ARESETN != 0 && ‘acw_w/r_state‘ != 2’b00)

In total, we develop eighteen security property templates for
verifying the security of the ACW, which are expanded to hundreds of
individual properties in Step 6. Eleven of these templates are related
to information flow and seven templates relate to trace properties.

6) Verify Security Properties: The final step generates specific
security properties and then verifies them via simulation. The eighteen
security property templates created in Step 4 and the assets identified
in Step 5 are used to automatically generate 316 security properties
which are broken down into 164 information flow properties and
152 trace properties. The verification setup for these properties
includes a configurable AXI DMA module acting as controller C.
C is wrapped with an ACW. A top testbench module mimics the
behavior of the peripheral P . The testbench iterates through resets and
configurations of the ACW and the DMA with the goal of switching
the ACW between operative modes to provide adequate coverage of
the necessary conditions for all of the security properties.

Tortuga Logic Radix-S is used for security verification. Each
property is written as an assertion using the Tortuga Logic Sentinel
security language. Radix-S generates a security model from the
security rules and a simple test design. When simulated, this security
model will report how many times each individual property assertion
fails along with the time at which each failure occurs.

C. Firmware-level Security Verification

One of the key features of AKER access control systems is the
simple and fast setup of the local access control policy of the ACWs.
This can be setup once in static configuration (e.g., at boot time)
or managed at runtime by a TE. This operation is critical. Thus,
the interactions between the ACWs and the TE must be securely
validated. To perform firmware verification, we integrate AKER with
the OpenTitan [5] HRoT acting as the TE. The security verification
proposed in this section focuses on firmware-level security verifica-
tion of AKER, i.e., securely validating the interaction of the TE and
the ACW. It is worth mentioning that AKER can be easily integrated
with other TE, such as other HRoTs, trusted processors, etc.

We use the same process introduced in Section III-B to validate
the firmware-level security of the interactions between the ACW and
the TE. There are four entities that we are concerned with: a single
controller C, a single ACW which wraps C, a single peripheral P ,
and the trusted entity TE. Unlike the IP-level verification, the ACW’s
local access control policy LACP can be configured dynamically at
runtime by the TE.

1) Create Threat Model: In this scenario, our threat model as-
sumes that the ACW, the TE, and P are trusted, C is untrusted,
and, therefore, C’s ability to communicate with P via the ACW in a
manner which does not adhere to the dynamically-configured LACP
is a threat.

2) Identify Assets: In addition to the assets from the IP level, the
additional assets we identify are the design signals that make up the
five S AXI channels which allow the TE to configure the ACW, and
the design signals for the ACW’s read and write channel interrupt
lines.

3) Identify Potential Weaknesses: We identified seven relevant
CWEs which helped to expand the potential weaknesses in the
config/control group from Section III-B. The additional potential
weaknesses include the configuration ports which enable the TE to
set the ACW’s LACP (i.e., the five S AXI channels) and the two
interrupt lines which go from the ACW to the TE. Note that the
CWEs and potential weaknesses identified for the IP level are still
relevant for this scenario but, since we have already examined those,
we only focus on weaknesses related to the interactions between the
ACW and the TE in this section.

Relevant CWEs: 276, 1191, 1193, 1262, 1283, 1290, 1292

4) Define security requirements: For the configuration ports iden-
tified in Step 3, we develop security requirements addressing the
existence and the content of information flows between the TE and
the ACW’s configuration and anomaly registers. Since the TE is
present to configure the ACW’s LACP , it should be the source
of any information flows which modify the configuration registers.
Additionally, since the anomaly registers are populated with illegal
transaction metadata by the ACW for the TE, the TE should not be
able to modify the anomaly registers.

Requirement 3: The configuration/anomaly registers contain the
default values until they are modified by the TE (config.) and/or
ACW (illegal req. metadata tracking).

For the interrupt lines identified in Step 3, we develop security
requirements addressing the value of signals. The ACW should
alert the TE whenever there is an illegal transaction by driving
the appropriate interrupt line and otherwise it should not drive the
interrupts.

Requirement 4: An interrupt to TE is generated after the ACW
detects an illegal request.

5) Specify Security Properties:: The requirements relevant to the
TE and the configuration/anomaly registers are primarily information
flow tracking IFT properties. For example, the security requirement
from Requirement 3 is formalized using the following template which
fails if any unauthorized source modifies the configuration regs and
anomaly registers after reset.

‘unauthorized_signal‘ //source
when (‘reg‘ == ‘dflt_val‘) //tagging cond.
=/=> //no-flow op.

‘reg‘ //destination
unless (‘reg‘ == ‘dflt_val‘)

For the security requirements relevant to the interrupt lines, the
security property templates we specify are trace properties. In partic-
ular, Requirement 4 is formalized using the following specification
which fails if the interrupt line does contain the appropriate value
given the ACW’s operative mode.

‘INTR_LINE_W/R‘ == 1
unless (‘acw_w/r_state‘ != 2’b10)

In total, we develop four security property templates for verifying
the security of the firmware-level interactions between the ACW and
the TE. Three of these are information flow properties and one is a
trace property. These can all be found in our repository.
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6) Verify Security Properties: The four security property templates
created in Step 5 and the assets identified in Step 2 are used to
automatically generate 1,438 security properties which are broken
down into 1,436 information flow properties and 2 trace properties.
The verification setup for these properties is nearly identical to the
IP level setup (Section III-B) except for the presence of the TE for
configuring the ACW.

D. System-level security verification

Having verified the security of the ACW’s interactions at the IP
level and firmware level, we now use our six-step process to validate
the security of the interactions between multiple ACW-wrapped
controllers and several shared SoC resources. This scenario concerns
eleven entities: two controllers C1 and C2, two ACWs ACW1

and ACW2 wrapping C1 and C2, respectively, three peripherals
P1 · · ·P3, an interconnect, and the TE. This scenario corresponds
to an architecture from Figure 2 when N = 2 and L = 3. The
LACP1 of ACW1 states that C1 can read from all regions of R1

= {P1, P2} and write to all regions of W1 = {P1}. The LACP2 of
ACW2 states that C2 can read from all regions of R2 = {P3} and
write to all regions of W2 = {P2, P3}.

1) Create Threat Model: In this scenario, our threat model as-
sumes that ACWs, P s, and the TE are trusted, and that C1 and C2

are untrusted. The threat model focuses on the ability of the generic
Ci’s to communicate with the generic Pk via the ACW in a manner
which does not adhere to the LACP .

2) Identify Assets: The additional assets we identify as being rele-
vant at this level are all of the design signals within the unauthorized
regions for each Ci and the AXI signals which connect each Ci to
its respective ACWi.

3) Identify Potential Weaknesses: We identify three additional rel-
evant CWEs which helped to further expand the potential weaknesses
from the IP and firmware verification. Since we are validating at the
system level, the additional potential weaknesses include the manner
in which the LACP for ACWi is set as it relates the generic Ci

sharing resources with the generic Cj .

Relevant CWEs: 441, 1189, 1260

4) Define security requirements: We develop security require-
ments addressing the existence and the content of information flows
between every pair of Ci and Pk in accordance with each ACWi’s
LACPi. ACW1’s LACP1 states that there should never be infor-
mation flows between C1 and any region of P3. ACW2’s LACP
states that there should never be information flows between C2 and
any region of P1.

Requirement 5: Any C cannot receive/send data from/to any
region not contained within its ACW’s LACP.

5) Specify Security Properties:: The security property templates
we specify are all IFT properties. For example, the send aspect
of Requirement 5 is formalized below using the following template
which fails if any information originating from some Ci flows to any
unauthorized region.

‘sig_from_C‘ //source (always tagged)
=/=>

‘unauthorized‘ //destination

In total, we develop two IFT security property templates for
verifying the security of the interactions between multiple ACW-
wrapped controllers and multiple shared resources across our system.

Functionality for policy definition INTC XMPU AKER
Protect a limited set of predefined regions Yes Yes Yes
Dynamic allocation of read/write regions No Yes Yes
Definition of private read/write regions No No Yes
Definition of read-only/write-only regions No No Yes
Secure transactions identification Yes No Yes

TABLE I: Comparison of SoC access control systems. The AXI-
interconnect-based INTC and the XMPU access control systems available
exhibit limitations not seen in with AKER.

6) Verify Security Properties: The two security property templates
created in step 5 and the assets identified in step 2 are used to auto-
matically generate 76 IFT security properties. The verification setup
for these properties builds upon the Firmware-level verification from
Section III-C by inserting one additional ACW-wrapped controller
module, three memory modules to serve as peripherals, and one AXI
interconnect to connect the controllers with the peripherals.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance and resource usage of the AKER
access control system and verify its functional and security correct-
ness. The first set of experiments in Section IV-A compares the
performance and resource usage of an AKER access control system
with two typical methods of implementing on-chip access control
described in Section II-C. In Section IV-B, we provide a case study
of integrating an AKER access control system on the OpenPULP
architecture [7].

A. FPGA SoC Experiments

We develop an FPGA SoC architecture on a Xilinx Zynq Ultra-
scale+ platform. The architecture has three controller modules C1,
C2, and C3 implemented as hardware accelerators in the FPGA
fabric. C1, C2, and C3 are connected to a Xilinx AXI SmartCon-
nect [10], which is connected to a single peripheral resource P1

– the shared DRAM memory controller exposed as an AXI S bus
in the Processing System PS. This architecture is similar to the
one shown in Figure 1 with N = 3 and L = 1. C1, C2, and
C3 are implemented as three separate high-performance DMA IPs
– this choice allows easy configuration and can cover a range of
communication behaviors.

We implemented three different access control system: Design
(a) uses AXI SmartConnect (INTC) (Section II-C1), Design (b)
implements access control in PS leveraging the Xilinx Memory
Protection Unit (XMPU) [13] (Section II-C2), and Design (c) is
an AKER access control system involving three ACW modules. We
leverage one of the processors of the platform for the configuration of
the ACWs, which acts as the TE. The designs were synthesized using
Xilinx Vivado 2018.2. To achieve high accuracy, the performance
measurements are done by a custom timer implemented into the
FPGA fabric. We also deployed a Xilinx System ILA [21] to verify
the correct behavior of the ACW modules.

One of the major drawbacks of implementing the access control
within the AXI SmartConnect (Design (a)) is that the access control
policy cannot be dynamically modified. Moreover, the Vivado design
tool uses predefined addressable regions for the controllers – once
set, no additional custom regions can be added in the access control
policy of the AXI SmartConnect. Also, the predefined regions have
default read/write permissions; no read only regions can be defined.

Design (b) uses the XMPU integrated into the PS to implement
the access control system, which enables the definition of up to 16
custom memory regions. The XMPU uses the workaround of the
AXI ID signals described in Section II-C2 to identify the source
of a specific request and decide whether a request is legal or not
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(see [13]). However, the AXI SmartConnect connecting the C to the
PS does not propagate the ID signals to the PS [10]. Therefore, even
when forcing C1, C2, and C3 to issue requests with unique IDs,
once the requests are propagated by the AXI SmartConnect to the
PS, they lose the ID and therefore the XMPU cannot determine the
source of the request. Thus, the XMPU cannot reliably enforce any
access control policy that aims to differentiate the requests issued
by C1, C2, and C3. This means that even a very simple access
control policy defining a private read/write buffer for each C cannot
be implemented using the XMPU as the access control system. Also
in this case, the regions defined in the XMPU has default read/write
privilege that cannot be target for the definition of read-only regions.
Table I summarizes some of the features required to the access control
system for the implementation of common functionalities required in
security policies and the limitations of the methods available on the
modern SoC under evaluation. We evaluate the AKER access control
system with Designs (a) and (b) to understand relative performance
and resource usage. Therefore, we develop a simple access control
policy compatible with the limitations of the access control systems
of designs (a) and (b) and compare these three designs.

The first experiment compares the performance impact on the
memory access time of C1, C2, and C3 associated with the three
access control systems. We setup a common forbidden region F
in memory – any read or write request directed to that region is
illegal for any controllers C. We evaluate the memory access time
in isolation: C1, C2, and C3 are activated separately and access a
legal region of the memory for different amounts of data. Figure 4(i)
reports the measured memory access times. The results show similar
performance in latency and throughput for all the designs. This result
confirms that the per-transaction extra one clock cycle introduced by
the ACW modules has a negligible impact on performance.

The next experiment tests contention generated by illegal transac-
tions. We keep the same configuration of the previous experiment
for C1, but we configure C2 to try to concurrently access the
forbidden region F , i.e., it issues illegal requests. C2 issues a new
illegal transaction once the previous one has been replied with an
error – this behavior models a controller stuck trying to access an
illegal memory region due to a misconfiguration. As discussed in
Section II-C2, illegal requests in access control systems implemented
at the peripheral (Design (b)) occupy time on the interconnect
and therefore impact the performance of legal transactions. The
measured average access time for C1 are reported in Figure 4(ii).
The results from Design (b) show that the interference generated by
the illegal transactions issued by C2 impacts the performance of C1.
In particular, the average measured response time increases by 203%
on a 16-word transaction changing from 1.22 µ s in Designs (a) and
(c) to 3.7 µ s in Design (c). We measured a lower impact for longer
and consecutive accesses. However, in all the cases we measured an
impact of at least 20% on the average response times. In Design
(a) and (c) the illegal transactions of C2 are stopped before entering
the network – the results shows how AKER stops any interference
generated by illegal transactions while featuring flexibility in the
definition of the access control policy.

The final experiment tests a denial of service scenario. C1 keeps
the same configuration from the previous experiment while C2 is
setup to flood the interconnect, issuing continuous illegal requests,
thus leveraging the full throughput made available by the AXI
SmartConnect to C2. In this case, C2 mimics the behaviour of a
misconfigured or malicious high-throughput IP core. The results are
reported in Figure 4(iii). The impact on the response times of C1

in Design (b) is way higher than in experiment (ii): the average
measured response time of a 16-word transaction issued by C1 passes
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Fig. 4: Performance Evaluation: (i): the three designs act similarly in
isolation. (ii): The techniques differ in response time in situations with
illegal transaction requests. (iii): A DOS attack by C2 endangers the
availability of the DRAM memory from C1 in Design (b).

from 1.22 µ s of Designs (a) and (c) to 38.72 µ s in Design (b),
corresponding to an increase of 3074%. Again, the impact decreases
on longer and consecutive accesses, however, all of the tested cases
showed an impact of at least the 165% on the nominal average
response times. Thus, in all the tested scenarios, the response time of
C1 is more than the double with respect to nominal conditions. This
experiment shows how a misbehaving IP can create a denial of service
when using Design (b) for access control. This issue can be critical
in designs integrating software-configurable IPs – malicious software
could exploit this issue to act Denial-of-Service of the memory or
other resources to the other IPs integrated into the system. Indeed,
even if detected at runtime, the access control system implemented in
Design (b) does not provide any method to stop the flood of illegal
transactions.

Resources PULP 4 regs 8 regs 16 regs
LUT 156937 (57%) 326 (0.1%) 467 (0.2%) 730 (0.3%)
FF 53354 (10%) 358 (0.1%) 486 (0.1%) 744 (0.1%)

TABLE II: Resource consumption of the ACW module. The area impact
of the ACW can be target according to the requirements of the target
application.

Table II reports the resource consumption for different config-
urations of the ACW module implemented for the Xilinx ZYNQ
Ultrascale+ platform. The results report the resource consumption
of ACW deploying 4 regions (4 regs), 8 regions (8 regs), and 16
regions (16 regs). The results are compared with the resource cost of
the PULP SoC platform used in Section IV-B (PULP). The results
show that the ACW modules have a very limited impact on resource
consumption with respect to the cost of the PULP SoC. Moreover,
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the resource consumption can optimized to met the requirements of
the application.

B. PULP SoC Experiments

The Parallel Ultra-Low-Power (PULP) is an open-source multi-
core computing platform comprised of a multicore RISC-V processor.
PULP is divided into the SoC domain and the Cluster domain where
the SoC performs control and other high level functions while the
cluster is aimed at hardware acceleration across eight RISC-V cores.

There are two communication pathways between the SoC and the
Cluster. One pathway allows the Cluster to access the SoC, i.e., the
Cluster is the Controller and the SoC is a Peripheral. The other
communication pathway allows the SoC to access the Cluster – the
SoC is the Controller and the Cluster is a Peripheral. These two
communication pathways enable the fabric controller core in the SoC
domain and the eight cores in the Cluster domain to send/receive
information and access the shared L2 memory. Additionally, the
PULP’s memory map which includes areas for the Cluster subsystem,
the ROM memory, the SoC peripherals subsystem, and the L2
memory is fully addressable from any of the PULP’s nine cores.

The OpenPULP platform does not feature any default access
control system for the transactions going from the cluster to the
SoC, and vice-versa. Thus, we integrated an AKER access control
system using two ACWs to regulate the communication between the
PULP’s SoC domain and Cluster domain. Since both pathways use
the AXI standard, the process of wrapping their respective AXI M
is straightforward and only requires ensuring that the ACW’s ports
are connected to the proper signals. Once this is completed, the two
ACWs filter all the read/write transactions on the pathways.

We validated the access control policies enforced by the two
ACWs via test simulations with various ACW configurations. The
test simulations we used include C programs that do not make use
of the PULP Cluster and C programs which do make use of the
PULP Cluster. As a baseline, we ensured that all test simulations are
able to successfully run on the default PULP. For our first validation,
we configured both ACWs to allow all read/write transactions and
verify that all tests run successfully as with the baseline. For our
second validation, we configured both ACWs to block all read/write
transactions and verify that the tests which do not make use of the
PULP Cluster run successfully and those that do use the Cluster stall
while waiting for responses from the decoupled domains. For the
remaining validations, we used a combination of configurations to
ensure the ACWs are able to enforce access control policies that are
more fine-grained than the all-or-nothing approach used in the first
two validations. For each validation, we verified results using the
testbench output logs and vcd/waveforms (see Figure 5). The design
and testing frameworks are available in our repository [6].
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Fig. 5: s2c is the SoC to Cluster pathway. c2s is the Cluster to SoC
pathway. The default group shows a portion of the execution of a C
program using the Cluster with the default OpenPulp. The ACW group
shows the same portion of the execution with the addition of two ACWs
configured to block all transactions.

V. RELATED WORKS

Access control systems have been integrated into network-on-chip
(NoC) architectures. Fiorin et al. study different manners of integra-
tion [22]. Grammatikakis et al. describe a NoC firewall that checks
memory accesses in a distributed manner [23]. SurfNoC [24] can
isolate mixed-trust users and effectively utilizing the NoC in a time-
multiplexed manner. Sepulveda et al. [25] proposed a property-driven
method aimed at the specific security verification of NoC routers.
While AKER did not specifically focus on NoC architectures, it could
be extended to them with some modifications to our methodology.

Several research efforts have been spent by the research community
to advance the security of shared bus architectures. Restuccia et
al. proposed different solutions to enforce safety and security in
AXI architectures including a method to enforce a fair bandwidth
distribution among controllers [26], a method to prevent DoS caused
by misbehaving/malicious controllers [27], and a hypervisor-level
interconnect for the dynamic management of the controllers [28].
Jacob et al. [29] demonstrated how hardware vulnerabilities related
to access control can be injected in real systems during the integration
of third-party IP modules. A brief discussion of prevention techniques
are provided without providing any specific solution. Oberg et al. [30]
describe techniques for security verification of I2C and USB. They
use hardware information flow tracking to perform verification of a
time division multiple access control scheme. Siddiqui et al. [11]
and Tan et al. [31] proposed two solutions for the implementation
of distributed and decentralized systems aiming to detect anomalous
conditions generated by hardware modules. While these solutions can
help mitigating misbehaving conditions generated by the hardware
module, they are not intended for the implementation of dynamic
access control systems. Huffmire et al. [32], [33] describe a mem-
ory protection mechanism for enforcing access control policies for
FPGAs accessing off-chip memory. Brunel et al. [34] provided a
software/hardware system for securing the off-chip memories with
static policies during boot phase. Cotret et al. [35] proposed an
hardware module for the deployment of distributed firewall systems.
It lacks a security verification strategy, it shows high performances
impact (18% increase in latency, that can also depends on how the
region table is sorted), and lacks of any integration with modern
HRoTs for secure configuration.

VI. CONCLUSION

We developed the AKER design and verification framework for
SoC access control systems. AKER builds upon the Access Control
Wrapper (ACW) that integrates with on-chip controller resources
to monitor their memory transactions. AKER provides an extensive
property-driven security verification framework. We show how to
design, integrate, and verify AKER access control systems into several
SoC architectures. We demonstrate that AKER has limited impact
on performance while using minimal resources. AKER is easily
integrated with a hardware root-of-trust to ensure secure configuration
of the the local ACW access control policies. AKER is released as
open-source repository [6]. This includes and extensive verification
framework with security templates, properties, and testbenches to
perform security verification at the IP, firmware, and system levels.
The repository also includes design files for the ACW and example
integration with OpenTitan, OpenPULP, and a Xilinx FPGA SoC.
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